


3-Terminal 1A Positive Voltage Regulator

GENERAL DESCRIPTION

The L7818 series of three terminal positive regulators are available in the TO-220 package and with several fixed output voltages, making them useful in a wide range of applications. Each type employs internal current limiting, thermal shut down and safe operating area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1.0A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C)

Parameter	Symbol	Тур	Unit	
Input Voltage	Vı	35	V	
Output Voltage	V _o 18		V	
Peak Current	I _{PK}	2.2	Α	
Operating Temperature Range	T _{OPR}	0~125	°C	
Storage Temperature Rang	T _{STG}	-65~150	°C	

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

(Refer to test circuit, Io = 500mA, Vi = 27V, Ci= 0.33uF, Co=0.1uF unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Output Voltage	Vo	$Tj = 25^{\circ}C V_1 = 21V \sim 33V$ $I_0 = 5.0 \text{ mA} \sim 1.0 \text{A}, P_D < 15W$	17.3	18.0	18.7	V
Line Regulation (Note1)	$\triangle V_{o}$	Tj = 25℃, Vi=21V ~ 33V	_	_	180	mV
		Tj = 25℃, V₁ = 24V ~ 30V	_	_	100	
Load Regulation (Note1)	$\triangle V_{o}$	$Tj = 25^{\circ}C$, $I_0 = 5.0 \text{mA} \sim 1.0 \text{A}$	_	_	100	mV
		Tj = 25℃ I _o = 250mA ~ 750mA		_	50	
Quiescent Current	IQ	T _J =+25 °C	_	_	8	mA
Quiescent Current	△IQ	$Io = 5.0 \mathrm{mA} \sim 1.0 \mathrm{A}$			0.5	mA
Change		Tj = 25℃, Vi=21V ~ 30V			1.0	mA
Output voltage drift	△Vo/△T	$Io = 5.0_{\mathrm{m}}A$		-1.0		mV/℃
Ripple Rejection	RR	$f = 120Hz, V_0 = 18.5V to 28.5V$	_	58	_	dB
Dropout Voltage	V_{Drop}	I _O = 1A, T _J =+25 °C	_	2		V
Output Resistance	R _o	f = 1KHz	_	0.02	_	Ω
Short Circuit Current	I _{sc}	V _I = 35V, T _A =+25 °C	_	200	_	mA
Peak Current	I _{PK}	T _J =+25 °C	_	_	2.2	А